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Polarization dynamics of solitons in birefringent fibers

S. M. Baker, J. N. Elgin, and J. Gibbons
Department of Mathematics, Imperial College of Science, Technology and Medicine, London SW7 2BZ, United Kingdom

~Received 18 October 1999!

We study the dynamics of uniformly polarized pulses in a birefringent optical fiber. By considering the
Hamiltonian structure, symmetries, and the momentum map of the underlying equations, we obtain a self-
consistent set of equations for the polarization state alone. In the autonomous case, we find the bifurcation
curve of this system, and discuss how the orbits change in the neighborhood of this curve. We calculate the
orbits explicitly. An extension to nonautonomous underlying equations is also possible. We further briefly
discuss the effect of radiation emission from solitons as their polarization state changes.

PACS number~s!: 42.25.Lc, 42.25.Ja
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I. EQUATIONS OF MOTION

The propagation of an optical pulse down a birefringe
optical fiber is usefully described by the perturbed vec
nonlinear Schro¨dinger equation@1–3#:

i
]q

]z
2

]2q

]t2
22q~q†q!

1bs1q2 ib8s1

]q

]t
2g~z!s3q12Bs3q~q†s3q!50.

~1!

Here q5(q1 ,q2)T, whereq1 ,q2 are the components of th
envelope pulse in each of the linearly polarized modes;q1
andq2 are the amplitudes of thefastandslowmodes, respec
tively. The independent variablez is the distance of propa
gation down the fiber, andt is a retarded time variable. Th
term (]2q/]t2) is the usual second order dispersion ter
The symbol † denotes the Hermitian conjugate, so that

qq†q5~ uq1u21uq2u2!S q1

q2
D . ~2!

The parametersb and b8, which are both taken to be
positive, are respectively the weak and strong birefringe
parameters, so thatb is proportional to the difference in
phase velocity between the two modes, whileb8 is propor-
tional to the difference of their group velocities. These tw
quantities are frequency dependent;b8 is the derivative ofb.
Here they are evaluated at the carrier frequency, and tre
as constants.

The parameterg(z) allows for twisting of the fiber axes
with distance down the fiber. It is often presumed thatg
varies randomly with distance down the fiber, in accorda
with properties of ‘‘real’’ fibers@4,5#. It has been pointed ou
that, by a change of variables, one may remove the t
g(z)s3q; however, this is at the cost of replacings1 in the
remaining polarization-dependent terms by az-dependent
matrix. Of course, the underlying dynamics will be indepe
dent of the coordinates used.

Finally, if the last term in Eq.~1! is expanded, it assume
the more recognizable form:
PRE 621063-651X/2000/62~3!/4325~8!/$15.00
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2BF uq2u2q12q2
2q1*

uq1u2q22q1
2q2*

G , ~3!

where* denotes the complex conjugate. For optical fibersB
equals 1/3, although in many studies it is treated as a suit
small parameter, to permit study of Eq.~1! using perturba-
tion theory@6#.

Here and throughout this paper, thes j are the~renum-
bered! Pauli matrices:

s15S 1 0

0 21D ,

s25S 0 1

1 0D , ~4!

s35S 0 i

2 i 0D .

In an early study of nonlinear interaction in waveguide
Wabnitz and co-workers@7–9# investigated Eq.~1! in the
limit of cw beams, so that all terms with time derivative]/]t
are identically zero. Using the variables

Sj5
q†s jq

q†q
, j 51,2,3, ~5!

they obtained a ‘‘torque’’ equation for the evolution ofS
5(S1 ,S2 ,S3) in the form

dS

dz
5S3V. ~6!

The vectorS is the Stokes vector; this is a unit vector th
characterizes the polarization state of the beam comple
Its significance is discussed later. Any point on the u
sphere characterized by the coordinates (S1 ,S2 ,S3) corre-
sponds to a unique polarization state of the electromagn
field. The equatorS350 corresponds to linearly polarize
beams, while the two polesS3561 correspond to the two
circularly polarized states. Wabnitzet al. analyzed the bifur-
cations that occur as the parametersb, g, andB are varied.
Their analysis is extended here, first by showing that
4325 ©2000 The American Physical Society
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same torque equation also describes the polarization dyn
ics of soliton pulses, and by deriving its Hamiltonian stru
ture, then by deriving the bifurcation curve, an astroid in
b2g plane, which completely distinguishes all the differe
types of evolution of the polarization state.

A central feature of this paper is the introduction of t
momentum map; this enables us to reduce Eq.~1! to a spe-
cific Lie-Poisson form of the torque equation not previou
reported in this context; this is

dS

dz
5S3

]H

]S
. ~7!

Here H(S) is the reduced Hamiltonian function, obtaine
from Eq. ~1!, which is determined by the properties of th
host medium and the pulse envelope; it describes the de
dence of the energy on the polarization state. This func
thus determines the manner in which the polarization s
evolves. For example, in the simplest case of Faraday r
tion, where the polarization eigenstates are right and left
cularly polarized light,H5bS3, whereb is the difference
between the phase velocities of the two modes. In gene
the eigenstates correspond to points on the sphere w
S3(]H/]S)50 so thatS is either parallel or antiparallel to
]H/]S. In this case, the eigenmodes are seen to be the p
S3561, where it can be seen thatH takes its maximum and
minimum values on the sphere. If the initial polarizatio
state of the field is linear, Eq.~7! indicates that it will remain
linearly polarized, but that the polarization axis will rotate
the constant rateb. This description of Faraday rotation is o
course well known—what we emphasize here is its desc
tion in terms of the Hamiltonian system~7!. The appropriate
form of H(S) corresponding to Eq.~1! is derived below. In
this case, the Hamiltonian formalism enables us to giv
straightforward geometrical description of the orbits of t
reduced system, and their bifurcations. While these could
derived from the equations directly, the Lie-Poisson a
proach used here is more natural and, we believe, instruc
when discussing a Hamiltonian system with symmetry, s
as Eq.~1!.

The first treatment of the evolution of the polarizatio
state of a soliton pulse was reported by Akhmediev and o
ers in a series of papers@11–13#. HereS is now an averaged
polarization state for the soliton, as will be described belo
and the resulting evolution equation forS(z) is again the
torque equation given by Wabnitzet al.A discussion of pos-
sible bifurcations and types of evolution ofS(z) is reported
in @11,12# for the symmetric case when the parameterg in
Eq. ~1! is set to zero. In@13#, the approach is applied to
slightly different system which, however, has similar sy
metry properties. Here we extend their approach in th
ways: first by using the momentum map to show how Eq.~7!
can be derived systematically from the Hamiltonian fun
tional H(q), which generates the perturbed nonlinear Sch¨-
dinger equation~1!, second by extending to the significant
more complex asymmetric case, and third by discussing
effects of a nonautonomous perturbation such as
z-dependentg discussed above.
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II. MOMENTUM MAP

Let us consider the unperturbed form of Eq.~1!, with b
5b85g5B50:

iqz2qtt22q~q†q!50. ~8!

This is a completely integrable system; Manakov gave
zero curvature representation in@14#. More relevant here is
its invariance under the action of the Lie group SU~2!, for if

q̃5Uq,
~9!

q̃†5q†U†,

andU is a 232 unitary matrix, thenq̃ will also satisfy Eq.
~8!. The derivative of this action at the identity is an action
the Lie algebra su~2!:

XA~q!5Aq,
~10!

XA~q†!5q†A†.

Here A can be any traceless skew-Hermitian matrix; the
can be expanded in any appropriate basis, for instance,

A5 i (
j 51

3

ajs j , ~11!

where thes j are the Pauli matrices defined as in Eq.~4!
above. Their commutation relations are

@ is j ,isk#522i e jkls l . ~12!

The coefficientsaj are real. Now both Eqs.~8! and ~10!, as
well as the perturbed Eq.~1! have the same canonical Hami
tonian structure, with the Poisson bracket given by

$H,J%5 i E
2`

` dH

dq

dJ

dq†
2

dJ

dq

dH

dq†
dt. ~13!

The Hamiltonian for Eq.~8! is

H5E
2`

`

qt
†qt2~q†q!2dt, ~14!

while that for the vector fieldXA is

J~A!5E
2`

`

2 i ~q†Aq!dt5TrS 2 iAE
2`

`

qq†dtD
5TrS 2 iAE

2`

`

~qq†2Iq†q/2!dtD 5Tr~2 iAJ!.

~15!

HereI is the 232 identity matrix. If the matrixA is consid-
ered as an element of the Lie algebra SU~2!, then the expres-
sion, known as the momentum map~see, for instance,@15#!,

J5E
2`

`

~qq†2Iq†q/2!dt ~16!
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should be understood as taking values in its dual, SU(2* .
We can expandJ, which is traceless and Hermitian, in th
dual basis:

J5
1

2 (
j 51

3

Jjs j ,

~17!

Jj5J~s j !5Tr~s jJ!5 1
2 E

2`

`

q†s jqdt.

The componentsJj are real. Their Poisson brackets, given
Eq. ~13!, have identical structure constants to the basis m
trices is j :

$Jj ,Jk%5 i E
2`

` dJj

dq

dJk

dq†
2

dJk

dq

dJj

dq†
dt5 i E

2`

`

q†@s j ,sk#qdt

522E
2`

`

e jklq
†s lqdt522e jklJl . ~18!

The componentsJj are, up to a multiplicative factor, th
Stokes parameters, which are the standard variables in w
to discuss polarization phenomena in linear media. The
tion of the symmetry~9! on J, considered now as the three
component vector (J1 ,J2 ,J3)T, is an orthogonal rotation
Hence the orbit ofJ under the group SU~2! is a sphere; this
is of course the Poincare´ sphere.

We will see below that these variables give a natural a
effective description of nonlinear polarization dynamics
birefringent media. First it is necessary to restrict our att
tion to states of the system for which the polarization is w
defined.

III. CANONICAL EVOLUTION EQUATION

Now we consider the perturbed system~1!. This can be
written as

qz5$H1HI ,q%52 i
d~H1HI !

dq†
, ~19!

where the Poisson bracket is defined as in Eq.~13!, the
HamiltonianH is given above in Eq.~14!, and the perturba-
tions are generated by the Hamiltonian

HI5E
2`

`

bq†s1q2
ib8

2
~q†s1qt2q†

ts1q!2gq†s3q

1B~q†s3q!2dt. ~20!

The first two conserved quantities for the unperturbed sys
are

c05E
2`

`

q†qdt, ~21!

c15
i

2 E
2`

`

~q†qt2qt
†q!dt. ~22!

These are also conserved quantities for the perturbed sy
~1!. Using Eqs.~18! and ~19!, we find
a-

ich
c-

d

-
ll

m

em

dJj

dz
5 i E

2`

` S q†s j

dHI

dq†
2

dHI

dq
s jqD dt. ~23!

The contribution to this from the first and third terms in E
~20! is easily found to be

e i jkJj

]

]Jk
~bJ12gJ3!. ~24!

It is not possible to express the other two terms this simply
these give

2b8e i j 1E
2`

`

~qt
†s jq2q†s jqt!dt ~25!

and

24iBe im3E
2`

`

~q†smq!~q†s3q!dt, ~26!

respectively. In this paper, however, we will suppose that
polarization state does not change along the length of
pulse, and that the pulse profile does not vary withz, which
is the case for vector solitons. This property has been veri
experimentally by Evangelideset al. @16#. Then we have
q(z,t)5q(t2v21z)eif(z)c(z), wherec is a unit vector~that
is, satisfyingc†c51), andq(z,t) is a scalar. The velocityv
and phasef are irrelevant to the polarization dynamics di
cussed here. The vectorc carries complete information abou
the polarization state. Then we see that

Ji5c0c†s ic ~27!

and the terms~25! and ~26! become

i e i jkJj

]

]Jk
S 2

c1

c0
b8J1D ~28!

and

2 i e i jkJj

]

]Jk
S 2

a

c0
BJ3

2D , ~29!

wherea5*2`
` (q†q)2dt/c0. This is a constant for the clas

of pulses considered. In particular, if the profile is the unp
turbed solitonq5h sech(ht), thena5 2

3 h2. Thus the evolu-
tion equation forJ may be written in the Lie-Poisson form

dJi

dz
5e i jkJj

]H

]Jk
, ~30!

where the new Hamiltonian functionH is

H5S b22
c1

c0
b8D J12gJ312

Ba

c0
J3

2 . ~31!

This function is the restriction of the functionHI to uni-
formly polarized pulses. Finally, it is convenient to introdu
the unit vector in the direction ofJ:

S5J/c0 . ~32!
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We also note thatb22c1b8/c0 is the first-order Taylor ex-
pansion for the parameterb(v), evaluated at the spectra
peak of the soliton pulsev022c1 /c0, rather than at the ref
erence~carrier! frequencyv0. We denote this expressio
hereafter as justb. Hence our final result is that

dS

dz
5S3

]H

]S
, ~33!

where

H5bS12gS312aBS3
2 . ~34!

In components, this is

d

dzS S1

S2

S3

D 5S S2~S32g!

2S1~S32g!1bS3

2bS2

D . ~35!

IV. BIFURCATIONS OF THE DYNAMICS

We can now discuss the orbits of Eq.~34!. By conserva-
tion of energy, these must be the intersections of level se
H with the Poincare´ sphere; that is, solutions of the tw
equations

1

2
S3

22ḡS31b̄S15e, ~36!

S1
21S2

21S3
251. ~37!

Here, we have introducedḡ5g/(4aB) and b̄5b/(4aB),
while the left hand side of Eq.~36! is the normalized Hamil-
tonian H̄5H/(4aB). The Hamiltonian structure is un
changed if we then replacez by z̄54zaB. These level sets
are a three-parameter family of parabolic cylinders, labe
by the parametersb̄, ḡ, and the normalized energye. We
need to understand the singularities of this family. The s
plest of these are the fixed points, where the sphere is tan
to one of the parabolic cylinders,H̄(S)5e. From the equa-
tion of motion ~34!, we see that all fixed points lie in th
planeS250, which is clearly a plane of symmetry of bot
the sphere andH̄. All periodic orbits must cross this plane
for otherwiseS3 would be monotonic. If we eliminateS1 at
these intersection points, we get a quartic polynomial inS3:

Q~S3!52S 1

2
S3

22ḡS32eD 2

1b̄2~12S3
2!50. ~38!

Now the number of real roots of this quartic must be ev
Note that ifS3

2.1 andb̄ is real, thenQ(S3),0, so any real
roots must occur in the interval21<S3<1, corresponding
to real points of the sphere. If there are no real roots, then
sphere and cylinder do not touch and the orbit is empty
there are two roots, the orbit is a simple closed curve, cro
ing S250 at these two points. If, however, all four roots a
real, then the sphere must intersect the energy surfacetwice
in two disjoint curves, which are distinct orbits of the sy
tem. For anyb̄,ḡ, there will be some values ofe where two
or more of these roots coincide. A double root correspond
of

d

-
ent

.

he
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s-
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a fixed point of the motion, which is a point of tangency
the sphere and the energy surface. There must always b
least two of these, forH must achieve its maximum an
minimum value on the sphere. Clearly any double root
Q(S3) is a common root ofQ(S3) and the cubicQ8(S3).
EliminatingS3 from these simultaneous equations forS3 and
e gives another quartic equation, in the energye, Q̃(e)50.
We will not write this out explicitly. As we have just seen
this must have at least two real roots, but depending on
values ofb̄ and ḡ, the remaining two roots may be eithe
complex or real. In the former case, the intersection of
sphere withany energy surfaceH̄5e is a simple closed
curve—thus the HamiltonianH̄ has one maximum and on
minimum on the sphere, but no other critical points. In t
latter case, there are some energy surfaces that cut the s
twice, giving two disjoint closed curves. This is illustrated
Fig. 1. HereH̄ still has a maximum and a minimum, as we
as two other critical points—these must be a saddle an
second maximum. The saddle will of course be an unsta
fixed point of the motion. The homoclinic orbit through th
saddle will have two lobes; these are separatrices boun
the three families of closed curves surrounding the ot
three critical points. This is illustrated in Fig. 2.

Finally, we need to understand how the fixed points c
bifurcate. There are two approaches here—we can look
double roots ofQ̃(e), or more simply, we can look for triple
roots ofQ(S3). If, at the triple root, we setS35cos(Q), and
require simultaneously that

Q~S3!5Q8~S3!5Q9~S3!50, ~39!

we get, for given Q, three simultaneous equations fo
(b̄,ḡ,e):

1

2
cos2~Q!2ḡ cos~Q!1b̄ sinQ2e50,

2sin~Q!cos~Q!1ḡ sin~Q!1b̄ cosQ50, ~40!

FIG. 1. Energy level surfaces corresponding to the roots of

quarticQ̃(e)50. ~a! Q̃ has only two real roots,e18.e28 , the maxi-

mum and minimum ofH on the sphere.~b! Q̃ has four real roots,
e1.e2.e3.e4. Note that the level sets of maximum and minimu
energy,e1 ande4, touch the sphere only at their points of tangenc
p1 and p4, whereas the sets of energye2 and e3 also have two
transversal intersections, as well as the points of tangencyp2

andp3.
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sin2~Q!2cos2~Q!1ḡ cos~Q!2b̄ sinQ50.

From here it is elementary to find

e512
3

2
cos2~Q!,

b̄5sin3~Q!, ~41!

ḡ5cos3~Q!.

We see therefore that all these bifurcation points lie on
astroid

b̄2/31ḡ2/351. ~42!

This is a closed curve in the (b̄,ḡ) plane, with cusps at the
points (61,0) and (0,61). It is illustrated in Fig. 3.

FIG. 2. ~a! Intersection of level setH(S)5e3 with the Poincare´
sphere, showing the lobes of the homoclinic orbit through
saddlep3. ~b! As pointsp2 andp3 coalesce, one lobe shrinks to
point c, which is a cusp of the remaining lobe.

FIG. 3. The astroidb̄2/31ḡ2/351. Some orbits, correspondin
to points~a!–~h! are shown in Fig. 4.
e

If ( b̄,ḡ) lies outside this curve, the linear terms inH̄
predominate,H̄ has two critical points, and the orbits are a
simple closed curves. In this case we expect the motion to
a deformation of that found in the linear model, in whichS
precesses at constant rate around a circle on the spher
however, (b̄,ḡ) lies inside the curve, then the nonlinear ter
is more important, andH̄ will have a saddle point on the
sphere, and a homoclinic orbit through this point.

As the curve is approached, the saddle and one of
other critical points will coalesce. The lobe of the homoclin
orbit surrounding this extremum will then shrink onto th
saddle point; the other lobe of the homoclinic orbit will the
have a cusp at this point. This is shown in Fig. 2~b!. Some
other representative orbits are shown in Fig. 4.

There are further singularities at the cusps of the bifur
tion curve; at these pointsH̄ has higher symmetry than w
have considered so far. There are two cases, on theḡ andb̄

axes. In the former case, whenb̄50, H̄ is invariant under
rotations about theS3 axis, so we can see at once that t
orbits are small circles on the sphere;S35const. The Hamil-
tonian in this case isH̄5 1

2 S3
22ḡS3, so the rate of precessio

about the axis is

v35
]H̄

]S3
5S32ḡ. ~43!

If uḡu.1, thenv will not vanish on the sphere, and the on
fixed points are at the polesS3561. However, if uḡu,1,
then one circle S35uḡu will have vanishing rate of
precession—it is a locus of fixed points. The rate of prec
sion changes sign as this locus is crossed. Now if we leḡ
tend to61, this stationary locus will collapse onto the fixe
point at the poleS3561, which will be neutrally stable.
This singularity is known as aHamiltonian Hopf bifurcation
@10#.

The other special case occurs whenḡ50. This case was
discussed by Akhmediev and Soto-Crespo@11#. HereH̄ has
the reflection symmetryS3→2S3, and so the orbits, or pair
of them, must have this symmetry too. Here, ifb̄.1, as in
the asymmetrical case, the orbit is a simple closed cu

e

FIG. 4. The orbits corresponding to the points (b̄,ḡ) shown in
Fig. 3.



a
s

n
d

r-

ou

t

ip

in

n

her

the

as
e

ate

ng
of

ing

g

ex-
e
e

4330 PRE 62S. M. BAKER, J. N. ELGIN, AND J. GIBBONS
while for 0,b̄,1, the pointS151 becomes a saddle, with
symmetrical pair of homoclinic orbits on either side of it. A
b̄→1, these orbits shrink onto the saddle, so that atb̄51, it
becomes a neutrally stable fixed point. This is called
Hamiltonian pitchfork bifurcation. As b̄→0 from above, the
two lobes of the homoclinic orbit approach the equatorS3
50 from either side, so that it becomes, as we have see
locus of fixed points. For negativeb̄ the process is repeate
in reverse, with the saddle point now being atS1521.

In their analysis of the cw case, Matera and Wabnitz@9#
introduced the parametersp and t, as measures of the no
malized ‘‘power’’ in the cw beam, and the ‘‘twist ratio’’ of
the fiber, respectively. These are effectively related to
parametersb̄ andḡ by p51/b̄, andt5ḡ/b̄; there, however,
p depends on the power of the cw beam, rather than on
energy of the soliton pulse. The bifurcation curve~42! be-
comes, in these variables,p2/32t2/351. The parametera
introduced above may be identified withp in the cw case.

V. ORBITS

For general (b̄,ḡ), the equation of motion forS3 reduces
to the simple form

S dS3

dz̄
D 2

5Q~S3!, ~44!

which can be solved explicitly in terms of Weierstrass ell
tic ` functions. Here we denote

Q~S3!5a0S3
414a1S3

316a2S3
214a3S31a4 , ~45!

so that

a0521/4, ~46!

a15ḡ/4, ~47!

a252~ ḡ21b̄22e!/6, ~48!

a352ḡe/2, ~49!

a452e21b̄2. ~50!

The solution of the general equation of this type is given
@17#. Let r be any root of the quarticQ(S3), and ifg2 andg3
are its two invariants, given by

g25a0a424a1a313a2
2 , ~51!

g35a0a2a412a1a2a32a2
32a0a3

22a1
2a4 , ~52!

then the solution of Eq.~44! is

S35r 1
1

4

Q8~r !

F`~ z̄;g2 ,g3!2
1

24
Q9~r !G . ~53!
a

, a

r

he

-

Here`( z̄;g2 ,g3) is the standard Weierstrass elliptic functio
with invariantsg2 and g3. The other two components ofS
can be found from this and the equation of motion.

This expression assumes a much simpler form if eit
period of the elliptic function`( z̄) tends to infinity; this
happens on any homoclinic orbit, and in particular, on
limit of these, the cusped orbit. In the former case, (b̄,ḡ) lies
inside the bifurcation curve~42!. As the homoclinic orbit is
approached, the real period of` tends to infinity; the orbit
may thus be found in terms of hyperbolic functions. Here,
we have seen, the quarticQ(S3) has a double root, so th
equation of motion is now

S dS3

dz̄
D 2

52
1

4
~S32r 0!2~S32r 1!~S32r 2!, ~54!

wherer 0 is the double root at the saddle point. We can rel
the roots (r 0 ,r 1 ,r 2) to (b̄,ḡ) as follows. We setr 0
5cos(u0). This must be a root of bothQ(S3)50 and
Q8(S3)50. The first equation fixes the energy,

1

2
cos2~u0!2ḡ cos~u0!1b̄ sinu05e, ~55!

while the second relatesu0 to b̄ and ḡ:

b̄

sin~u0!
1

ḡ

cos~u0!
51. ~56!

Now the other two roots are found directly,

r 152ḡ2cos~u0!2Ab̄ḡ tan~u0!, ~57!

r 252ḡ2cos~u0!1Ab̄ḡ tan~u0!. ~58!

There are two branches of the homoclinic orbit, originati
from the saddle pointr 0, and passing through either one
the simple rootsr 1 or r 2. Equation~54! may be integrated in
elementary functions, using the ansatzS35r 111/u( z̄) to
find the branch of the corresponding solution pass
throughS35r 1; this is

S35r 11
r 02r 1

11S r 22r 0

r 22r 1
D cosech2~kz̄!

, ~59!

wherek25(r 02r 1)(r 22r 0)/16, which is positive. We note
that S3→r 0 as z̄→6`, as required, while the remainin
constant of integration is chosen so that ifz̄50, S35r 1. Of
course the other branch of the orbit may be found by
changing r 1 and r 2 throughout. This solution could hav
been obtained directly by using the known limit of th
Weierstrass̀ function:

`S z;
4

3k4
,2

8

27k6D 5k2S 1

3
1cosech2~kz! D . ~60!
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As (b̄,ḡ) approaches the curve~42!, this solution degen-
erates further, for in this limit the imaginary period of th
solution then tends to infinity as well; then thè function
reduces to just

`~z;0,0!51/z2, ~61!

and the solution becomes a rational function. Here the q
tic Q(S3) now has a triple root, so the equation of motion

S dS3

dz̄
D 2

52
1

4
~S32r 0!3~S32r 1!, ~62!

with r 05cos(Q) and r 15cos(3Q). The orbit is then

S35r 11
r 02r 1

@1116/„~r 02r 1!z̄…2#
. ~63!

VI. SOME FINAL COMMENTS

The possible evolutions forS just described, and illus
trated in the figures, are unstable on long time scales. Th
because the perturbing termsHI , which are responsible fo
the change in polarization stateS, also cause the soliton
pulse to shed radiation as it propagates along the fiber.
simply, if the perturbing termsHI are of ordere, then the
energy of the radiation generated will be of ordere2. The net
effect of this process on the evolution ofS that we have
described is a slow drift to lower energy levelse. This is
essentially the origin of the fast mode instability@18#. This
effect is only absent at stationary points of the polarizat
dynamics, so stable equilibrium is only reached at
~unique! minimum ofH, when]H/]S andS are antiparallel;
this corresponds to the slow mode. More drastic effects oc
if nonautonomous perturbations are considered. It is o
the case thatg varies randomly with distancez̄ down the
fiber. Any such variation that makes a Hamiltonian syst
nonautonomous can ‘‘break’’ a homoclinic orbit, leading to
chaotic evolution forS. We demonstrate this for the simple
case whereg is taken to beg( z̄)5e cos(Vz̄), corresponding
to ‘‘rocking’’ of the birefringence axes of the fiber. Menyu
and Wai@19# discuss the field evolution of fibers with rocke
birefringence axes. They point out that in the linear case,
is, with the parameterB̄50, the trajectory on the Poincar´
sphere describing the polarization state of the optical fiel
quasiperiodic. The motion combines the frequenciesb
1e2V2/(16b) and V. Almost always, the frequencies a
incommensurate and the trajectory will then fill some reg
of the Poincare´ sphere ergodically. If, however, they a
commensurate, the trajectory executes a Lissajous figur
the sphere.

We can get an idea of the effect of small perturbations
the homoclinic orbit, for instance in the caseb̄,B̄Þ0, and
ḡ5e cos(Vz̄), where 0,e!1, by applying Mel’nikov analy-
sis to the system. This requires calculation of the funct
M ( z̄0) defined below; it is known that ifM ( z̄0) has simple
zeros, the effect of the perturbation is to break the
moclinic connection, leading to infinitely many transvers
intersections between the stable and unstable manifold
r-

is

ut

n
e

ur
n

at

is

n

on

n

n

-
l
of

the saddle point, giving rise to horseshoes and chaotic e
lution. Otherwise, ifM ( z̄0) is bounded away from zero, th
unstable and stable manifolds will not intersect at all. If t
evolution equation is given in the form

dS

dz̄
5S3

]H

]S
1eg~S,z̄!, ~64!

the Mel’nikov function for an orbit is defined@20# as a func-
tional of S( z̄):

M ~ z̄0!5E
2`

` ]H

]S
~ z̄!•g~S,z̄1 z̄0!dz̄; ~65!

here it is evaluated on the homoclinic solutionS(0)( z̄). Thus
M ( z̄0) can be thought of as a measure of the first-or
change in the HamiltonianH along the orbit as a result of th
perturbationg. Using the equation of motion, and integratin
by parts, we reduce the integral to

E
2`

`

b̄ cos„V~ z̄1 z̄0!…S2
(0)dz̄

52E
2`

`

sin„V~ z̄1 z̄0!…V~S3
(0)2r 0!dz̄

52sin„V~ z̄0!…E
2`

`

cos„V~ z̄!…~S3
(0)2r 0!dz̄,

~66!

wherer 0 is the value ofS3 at the saddle point, equal to 1 i
this case. Since the integral in the last line does not van
identically, we see thatM ( z̄0) has infinitely many simple
zeros, corresponding to infinitely many transversal inters
tions between the stable and unstable manifolds, resultin
chaotic dynamics. There is no threshold for the onset of
chaotic behavior; this is what we would expect in the a
sence of dissipation. This result extends immediately to
case

ḡ5ḡ01e cos~V z̄!, ~67!

while an extension to the case with random fluctuations inḡ
is also possible in principle.

We have seen that a careful consideration of the Ham
tonian structure and symmetries of Eq.~1! leads to a self-
consistent description of the polarization dynamics. This p
mits a complete description of the bifurcations of the reduc
system, and an exact calculation of its orbits, in particular
family of homoclinic orbits emanating from saddle point
The extension to nonautonomous systems of the same ty
also possible; here we expect perturbations in, for instan
the twist of the fiber, to lead to chaotic motion in the neig
borhood of the homoclinic orbit.
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