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Polarization dynamics of solitons in birefringent fibers
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We study the dynamics of uniformly polarized pulses in a birefringent optical fiber. By considering the
Hamiltonian structure, symmetries, and the momentum map of the underlying equations, we obtain a self-
consistent set of equations for the polarization state alone. In the autonomous case, we find the bifurcation
curve of this system, and discuss how the orbits change in the neighborhood of this curve. We calculate the
orbits explicitly. An extension to nonautonomous underlying equations is also possible. We further briefly
discuss the effect of radiation emission from solitons as their polarization state changes.

PACS numbds): 42.25.Lc, 42.25.Ja

l. EQUATIONS OF MOTION {|q2|2q1—q§q’{}
()

The propagation of an optical pulse down a birefringent
optical fiber is usefully described by the perturbed vector
nonlinear Schrdinger equatiori1—3]: where* denotes the complex conjugate. For optical fibBrs,

equals 1/3, although in many studies it is treated as a suitable
aq  d9%q small parameter, to permit study of E(.) using perturba-

i 2q9(9'q) tion theory[6].

at Here and throughout this paper, thg are the(renum-
bered Pauli matrices:

las/?a,—a%a3 |’

) aq
+Bo1q =i 01—~ ¥(2) 030+ 2Bosq(q'o30) =0.

10
(1) 717lo —1)
Here q=(q,,0,)", whereq,,q, are the components of the 0 1
envelope pulse in each of the linearly polarized modgs; 72711 o) (4)

andq, are the amplitudes of tHastandslowmodes, respec-
tively. The independent variableis the distance of propa- 0 i

gation down the fiber, antdis a retarded time variable. The 03:( ] )
term (9°q/dt?) is the usual second order dispersion term. -0

The symbol T denotes the Hermitian conjugate, so that In an early study of nonlinear interaction in waveguides,

Wabnitz and co-worker§7-9] investigated Eq(1) in the
Ty 2 N 2 limit of cw beams, so that all terms with time derivatigéit
qa'q=(laa|*+laz5| /. 2 o en . .
dz are identically zero. Using the variables

The parametergd and B, which are both taken to be qTUJ-q
positive, are respectively the weak and strong birefringence =ﬁ
parameters, so tha® is proportional to the difference in
phase velocity between the two modes, wislleis propor-  they obtained a “torque” equation for the evolution &f
tional to the difference of their group velocities. These two= (S, 'S, ,S;) in the form
quantities are frequency dependedt;is the derivative of3.

Here they are evaluated at the carrier frequency, and treated ds
as constants. RS Q. ©)

The parametery(z) allows for twisting of the fiber axes
with distance down the fiber. It is often presumed that The vectorS is the Stokes vector; this is a unit vector that
varies randomly with distance down the fiber, in accordance&haracterizes the polarization state of the beam completely.
with properties of “real” fiberd4,5]. It has been pointed out Its significance is discussed later. Any point on the unit
that, by a change of variables, one may remove the terrsphere characterized by the coordinat&s,5,,S;) corre-
v(z) o30; however, this is at the cost of replacing in the  sponds to a unique polarization state of the electromagnetic
remaining polarization-dependent terms byzaependent field. The equatoiS;=0 corresponds to linearly polarized
matrix. Of course, the underlying dynamics will be indepen-beams, while the two poleS;=*+1 correspond to the two

S

| ) j=112531 (5)

dent of the coordinates used. circularly polarized states. Wabniét al. analyzed the bifur-
Finally, if the last term in Eq(1) is expanded, it assumes cations that occur as the parametgrsy, andB are varied.
the more recognizable form: Their analysis is extended here, first by showing that the
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same torque equation also describes the polarization dynam- II. MOMENTUM MAP
ics of soliton pul_sgs, and b.y denymg Its Hamlltonlan ;truc- Let us consider the unperturbed form of Ef), with 8
ture, then by deriving the bifurcation curve, an astroid in the:B,: y=B=0:
B— v plane, which completely distinguishes all the different '
types of evolution of the polarization state. id,— e —20(q'q)=0. (8)

A central feature of this paper is the introduction of the
momentum map; this enables us to reduce @#yto a spe- This is a completely integrable system; Manakov gave its
cific Lie-Poisson form of the torque equation not previouslyzero curvature representation [it4]. More relevant here is

reported in this context; this is its invariance under the action of the Lie group (8}, for if
q=Ugq,
ds__ H . - ©
dz” %S @ a'=q'ut,

andU is a 2x2 unitary matrix, therg will also satisfy Eq.
Here H(S) is the reduced Hamiltonian function, obtained (8). The derivative of this action at the identity is an action of
from Eq. (1), which is determined by the properties of the the Lie algebra s@):

host medium and the pulse envelope; it describes the depen- XA(q)=Aq
dence of the energy on the polarization state. This function A ’ (10)
thus determines the manner in which the polarization state Xa(qH=g'Al.

evolves. For example, in the simplest case of Faraday rota-

tion, where the polarization eigenstates are right and left cirHere A can be any traceless skew-Hermitian matrix; these
cularly polarized lightH=8S;, where g is the difference can be expanded in any appropriate basis, for instance,
between the phase velocities of the two modes. In general,
the eigenstates correspond to points on the sphere where ) 3
SX (dH/9S)=0 so thatS is either parallel or antiparallel to A:'jzl aj0j, 1D
dH/4S. In this case, the eigenmodes are seen to be the poles,
S;=*1, where it can be seen thittakes its maximum and where theo; are the Pauli matrices defined as in E4)
minimum values on the sphere. If the initial polarization ghove. Their commutation relations are
state of the field is linear, Eq7) indicates that it will remain
linearly polarized, but that the polarization axis will rotate at lioj,io]=—2i€j 0. (12
the constant rat@. This description of Faraday rotation is of
course well known—what we emphasize here is its descripThe coefficientsa; are real. Now both Eqg¢8) and(10), as
tion in terms of the Hamiltonian syste(#). The appropriate ~ well as the perturbed E@l) have the same canonical Hamil-
form of H(S) corresponding to Eq1) is derived below. In  tonian structure, with the Poisson bracket given by
this case, the Hamiltonian formalism enables us to give a
straightforward geometrical description of the orbits of the (= 6H 63 463 oH
reduced system, and their bifurcations. While these could be {H.J}=i f_mg_q 5_q1“_ 5_q ﬁdt' (13
derived from the equations directly, the Lie-Poisson ap-
proach used here is more natural and, we believe, instructiveshe Hamiltonian for Eq(8) is
when discussing a Hamiltonian system with symmetry, such
as Eq.(1). s f

The first treatment of the evolution of the polarization H= fﬁmQt 0= (q')“dt, (14)
state of a soliton pulse was reported by Akhmediev and oth-
ers in a series of papef$1-13. HereSis now an averaged \yhile that for the vector field , is
polarization state for the soliton, as will be described below,
and the resulting evolution equation f&z) is again the o o
torque equation given by Wabniét al. A discussion of pos- J(A)= J —i(q*Aq)dtzTr( - iAf qudt)
sible bifurcations and types of evolution 8¢z) is reported o o
in [11,12 for the symmetric case when the paramegein (e _
Eq. (1) is set to zero. I{13], the approach is applied to a =Tr( —IAJ (qu—IqTq/Z)dt) =Tr(—iAJ).
slightly different system which, however, has similar sym- o
metry properties. Here we extend their approach in three (15
ways: first by using the momentum map to show how &g. _ ) ) ) o _
can be derived systematically from the Hamiltonian func-Herel is the 2x<2 identity matrix. If the matrixA is consid-
tional (), which generates the perturbed nonlinear $chro€red as an element of the Lie algebra(3lJthen the expres-
dinger equatior{1), second by extending to the significantly Sion, known as the momentum mégee, for instance,15]),
more complex asymmetric case, and third by discussing the
effects of a _nonautonomous perturbation such as the J= Jw (qq’—Iq g/2)dt (16)
z-dependenty discussed above. —
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should be understood as taking values in its dual, Sti(2) dJ o SH, OH,
We can expand, which is traceless and Hermitian, in the d—’zif (qToj—T— g 7id dt. (23
dual basis: z o= oq q
13 The contribution to this from the first and third terms in Eq.
=3 > Jjoj, (20) is easily found to be

17 3 -2 (B3 =3 (24)
o) €:; . — f— .
3=(o)=Tr(o;d)=3% J_wq*ojth. kT g3 M Y

) _ ) It is not possible to express the other two terms this simply—
The component3; are real. Their Poisson brackets, given by these give

Eqg. (13), have identical structure constants to the basis ma-

tricesio;: / = ;
-B eijljim(qtajq_q ajqydt (25
{ i k}_l o 8q 5q-’- 8q 5q1- =1 _Ocq [Ujuo-k]q and
=- f_ €nd oyqdt=—2¢J; . (18) _4iBeim3f_ (a'oma) (gTo3q)dt, (26)

The components); are, up to a multiplicative factor, the respectively. In this paper, however, we will suppose that the
Stokes parameters, which are the standard variables in whighvlarization state does not change along the length of the
to discuss polarization phenomena in linear media. The agulse, and that the pulse profile does not vary wgjtiwhich

tion of the symmetry(9) on J, considered now as the three- is the case for vector solitons. This property has been verified
component vector J;,J,,J3)", is an orthogonal rotation. experimentally by Evangelidest al. [16]. Then we have
Hence the orbit ofl under the group S(2) is a sphere; this  q(z,t)=q(t—v *z)e'?@c(z), wherec is a unit vectorthat

is of course the Poincargphere. is, satisfyingc’c=1), andq(z,t) is a scalar. The velocity

We will see below that these variables give a natural ancind phasep are irrelevant to the polarization dynamics dis-

effective description of nonlinear polarization dynamics incussed here. The vectorcarries complete information about
birefringent media. First it is necessary to restrict our attenthe polarization state. Then we see that

tion to states of the system for which the polarization is well

defined. Ji=cocloic (27)
lll. CANONICAL EVOLUTION EQUATION and the termg25) and(26) become
Now we consider the perturbed systéf). This can be ] d (2C13'J ) 29
written as ijk 193\ “co 1
 O(H+Hy) and
Q= {H+H, G = —i =, (19
oq
e di—( 22 B2 (29)
where the Poisson bracket is defined as in E), the €ijk 1od \ Tco 3)

Hamiltonian is given above in Eq(14), and the perturba-
tions are generated by the Hamiltonian wherea=[*_(q'q)?dt/c,. This is a constant for the class
) of pulses considered. In particular, if the profile is the unper-
* ig’ turbed solitong= 7 sech(t), thena= 2 »2. Thus the evolu-
_ tooa P — vt U ), 37
= f,mﬁq 710~ 5 (A 010=q010) ~ ¥4 o5 tion equation forJ may be written in the Lie-Poisson form

+B(q'o30)%dt. 20 dJ, IH
(q'o3q) (20 D -
The first two conserved quantities for the unperturbed system K

are where the new Hamiltonian functiad is
Co= fm q'qdt (21 C1, Ba ,
. : H=|B—2—8"|J;— yJs+2—J3. (32)
Co Co
i o0 . . . . . . .
- ta.—afg)dt. 29 This function is the restriction of the functioR, to uni-
€1 2 Jloo(q G~ @2 formly polarized pulses. Finally, it is convenient to introduce

the unit vector in the direction af:
These are also conserved quantities for the perturbed system
(1). Using Eqgs.(18) and(19), we find S=1J/c,. (32
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We also note tha8—2c,8'/cy is the first-order Taylor ex- (@) (b)
pansion for the parametg8(w), evaluated at the spectral ?81\

peak of the soliton pulse,—2c, /cg, rather than at the ref-
erence(carriep frequency wy. We denote this expression
hereafter as jusB. Hence our final result is that

ds S oH 33
dz ~4S’ (33
where
H=pS,— yS;+2aBS;. (39) 4
P »n
In components, this is
FIG. 1. Energy level surfaces corresponding to the roots of the
4 S Sy(S3—y) quarticQ(e)=0. (a) Q has only two real roots; >e;, the maxi-
—| S| = —Si(S3—y)+BS3 . (35)  mum and minimum oH on the spheretb) Q has four real roots,
dz —BS, e;>e,>e;3>e,. Note that the level sets of maximum and minimum
S B energy,e; ande,, touch the sphere only at their points of tangency,
p. and p,, whereas the sets of energy and e; also have two
IV. BIFURCATIONS OF THE DYNAMICS transversal intersections, as well as the points of tangemcy

. . dps.
We can now discuss the orbits of E®4). By conserva- andps

tion pf energy, _thes,e must be the ir_ltersectipns of level sets of fixed point of the motion, which is a point of tangency of
H with the Poincaresphere; that is, solutions of the tWo e gphere and the energy surface. There must always be at

equations least two of these, foH must achieve its maximum and
1 o minimum value on the sphere. Clearly any double root of
=S5— yS;+BS,=e, (36) Q(Sz) is a common root 0Q(S;) and the cubicQ’(S;).
2 Eliminating S; from these simultaneous equations &rand
S§+S§+S§=1. (37) e gives another quartic equation, in the enesgy(e)=0.

We will not write this out explicitly. As we have just seen,
Here, we have introducegz v/(4aB) and E: 8l(4aB), this must have at least two real roots, but depending on the

while the left hand side of Eq36) is the normalized Hamil- values of3 and vy, the remaining two roots may be either
tonian H=H/(4aB). The Hamiltonian structure is un- complex or real. In the former case, the intersection of the

changed if we then replaceby z=4zaB. These level sets sphere withany e”ergy sgrf_acd—lze IS a s'lmple closed
are a three-parameter family of parabolic cylinders, labele§Urve—thus the Hamiltoniakl has one maximum and one

by the parameters, y, and the normalized energy We minimum on the sphere, but no other critical points. In the
need to understand the singularities of this family. The sim-![atitg; cai:\s/ieﬁ trl\(,avr(()e ;;eosir?m:?oiggrng\S/:rsfagEisstihsaitlIﬁgzrgids?r?ere
plest of these are the fixed points, where the sphere is tanger)ﬁ’ » giving . ) . T

Fig. 1. HereH still has a maximum and a minimum, as well

to one of the parabolic cylinder$i(S)=e. From the equa- as two other critical points—these must be a saddle and a

tion of motion (34), we see that all fixed points lie in the . .
planeS,=0, which is clearly a plane of symmetry of both ;econd maximum. The saddle will of .cgurse.be an unsta}ble
— . i 4 fixed point of the motion. The homoclinic orbit through this

the sphere andi. All periodic orbits must cross this plane, saqdle will have two lobes; these are separatrices bounding

for otherwiseS; would be monotonic. If we eliminat8, at  the three families of closed curves surrounding the other

these intersection points, we get a quartic polynomigin  three critical points. This is illustrated in Fig. 2.

2 Finally, we need to understand how the fixed points can
+p%(1-s%)=0. (38 bifurcate. There are two approaches here—we can look for

double roots of)(e), or more simply, we can look for triple

Now the number of real roots of this quartic must be even/00ts 0ofQ(Sy). If, at the triple root, we se$;=cos®), and

Note that ifS§>1 andp is real, thenQ(S3) <0, so any real require simuitaneously that

roots must occur in the intervat 1<S;<1, corresponding Q(S;)=Q'(S3)=Q"(S;)=0, (39

to real points of the sphere. If there are no real roots, then the

sphere and cylinder do not touch and the orbit is empty. Iwe get, for given®, three simultaneous equations for
there are two roots, the orbit is a simple closed curve, crosgg, y,e):
ing S,=0 at these two points. If, however, all four roots are

real, then the sphere must intersect the energy sutfice

in two disjoint curves, which are distinct orbits of the sys-

tem. For anyﬁ,;, there will be some values @&where two o .
or more of these roots coincide. A double root corresponds to —sin(®)cog )+ ysin(®)+ Bcos® =0, (40)

1., —
QSy)=~| 55~

1 — _
> cos(0)—ycod®)+Bsin®—e=0,
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(b)

FIG. 2. (a) Intersection of level seil (S) = e; with the Poincare

sphere, showing the lobes of the homoclinic orbit through the

saddleps. (b) As pointsp, andps coalesce, one lobe shrinks to a
point ¢, which is a cusp of the remaining lobe.

Si(0) —cof(®)+ ycog®)— Bsin®=0.

From here it is elementary to find
3
e=1- Ecosz(@),

B=sirf(0), (41)

y=cos(0).

We see therefore that all these bifurcation points lie on th
astroid
B3+ =1, (42

This is a closed curve in the5(y) plane, with cusps at the
points (=1,0) and (0£1). It is illustrated in Fig. 3.

=

FIG. 3. The astroig3?3+ y?3=1. Some orbits, corresponding
to points(a)—(h) are shown in Fig. 4.

POLARIZATION DYNAMICS OF SOLITONS IN . ..

(a)

(b)

4

FIG. 4. The orbits corresponding to the poinf3, ¢) shown in
Fig. 3.

If (B,7) lies outside this curve, the linear terms kh
predominateH has two critical points, and the orbits are all
simple closed curves. In this case we expect the motion to be
a deformation of that found in the linear model, in whish
precesses at constant rate around a circle on the sphere. If,
however, (3,7) lies inside the curve, then the nonlinear term
is more important, andd will have a saddle point on the
sphere, and a homoclinic orbit through this point.

As the curve is approached, the saddle and one of the
other critical points will coalesce. The lobe of the homoclinic

é)rbit surrounding this extremum will then shrink onto the

Saddle point; the other lobe of the homoclinic orbit will then
have a cusp at this point. This is shown in Figh)2 Some
other representative orbits are shown in Fig. 4.

There are further singularities at the cusps of the bifurca-

tion curve; at these poimE has higher symmetry than we
have considered so far. There are two cases, orythed 8
axes. In the former case, whg=0, H is invariant under

rotations about thé&; axis, so we can see at once that the
orbits are small circles on the sphef= const. The Hamil-

tonian in this case il = %S%— vS3, so the rate of precession
about the axis is
oH _
w3=£=53— Y (43)
If |;|>1, thenw will not vanish on the sphere, and the only
fixed points are at the poleS;= = 1. However, if|y|<1,
then one circle S;=|y| will have vanishing rate of
precession—it is a locus of fixed points. The rate of preces-
sion changes sign as this locus is crossed. Now if w&let
tend to* 1, this stationary locus will collapse onto the fixed
point at the poleS;= =1, which will be neutrally stable.
This singularity is known as Bamiltonian Hopf bifurcation
[10].
The other special case occurs Wh;ﬁo. This case was
discussed by Akhmediev and Soto-Cre$pa]. HereH has
the reflection symmetr$;— — S;, and so the orbits, or pairs

of them, must have this symmetry too. Hereﬁibl, as in
the asymmetrical case, the orbit is a simple closed curve,
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while for 0<B<1, the pointS;=1 becomes a saddle, with a Herey(z;9,,93) is the standard Weierstrass elliptic function
symmetrical pair of homoclinic orbits on either side of it. As with invariantsg, and gs. The other two components &
B—1, these orbits shrink onto the saddle, so thagatl, it ~ can be found from this and the equation of motion.
becomes a neutrally stable fixed point. This is called a This expression assumes a much simpler form if either

Hamiltonian pitchfork bifurcationAs B—0 from above, the ~period of the elliptic functionp(z) tends to infinity; this
two lobes of the homoclinic orbit approach the equaggr happens on any homoclinic orbit, and in particular, on the
=0 from either side, so that it becomes, as we have seen,lenit of these, the cusped orbit. In the former cage, ) lies

locus of fixed points. For negativé the process is repeated inside the bifurcation curve42). As the homoclinic orbit is
in reverse, with the saddle point now beingSt=—1. approached, the real period pftends to infinity; the orbit

In their analysis of the cw case, Matera and Wabf@z ~may thus be found in terms of hyperbolic functions. Here, as
introduced the parametepsandt, as measures of the nor- We have seen, the quart@(S;) has a double root, so the
malized “power” in the cw beam, and the “twist ratio” of €quation of motion is now
the fiber, respectively. These are effectively related to our

— — . — 2
parameterg andy by p=1/8, andt= y/3; there, however, d_Sﬁ — E _r\2ra _

p depends on the power of the cw beam, rather than on the dz 4(S3 f0)(S=r)(Ss=ra), (54
energy of the soliton pulse. The bifurcation curi4?) be-

?R—t?B=1. The parameter wherer g is the double root at the saddle point. We can relate

comes, in these variableg;
introduced above may be identified wiphin the cw case. the roots (q,r1,f,) to (§;) as follows. We setr,
=cos(y). This must be a root of botfQ(S3)=0 and

V. ORBITS Q’(S;3)=0. The first equation fixes the energy,
For general f3,7), the equation of motion fos, reduces 1 - _
to the simple form Ecosz( 6,) — v cog 6,) + B sinf,=e, (55)
ds;|? = —
(_%) =Q(Sy), (44) while the second relateg, to 8 and v:
dz
B 4

which can be solved explicitly in terms of Weierstrass ellip- =1. (56)

- +
tic p functions. Here we denote sin(6p)  cog o)

Now the other two roots are found directly,

Q(Ss)=apS;+4a,S3+6a,S5+4a3S;+a,, (45

5o that r1=2y—cos ) — V By tan( o), (57)
ap=—1/4, (46) r,=2y—cog )+ \Bytan 6p). (58)
a,;= /4, (47)  There are two branches of the homoclinic orbit, originating
from the saddle pointy, and passing through either one of
a,=—(y2+ B2—e)l6, (48) the simple roots; or r,. Equation(54) may be integrated in

elementary functions, using the ans&z=r,+1/u(z) to
= find the branch of the corresponding solution passing
3=~ yel2, (49) throughS;=r;; this is

a,=—e’+p>. (50) ro—r1

(59

ro '
cosecR(kz)
Fa—=ry

. . . o . S=r1+
The solution of the general equation of this type is given in
[17]. Letr be any root of the quartiQ(S;), and ifg, andg, 1+
are its two invariants, given by

wherek2=(ro—Ll)(rz—rO)/16, which is positive. We note
that S;—ry as z— =, as required, while the remaining

(52) constant of integration is chosen so that#0, Sz=r;. Of
course the other branch of the orbit may be found by ex-
changingr, andr, throughout. This solution could have
been obtained directly by using the known limit of the
Weierstrassg function:

g,=aga,—4ajaz+3a3, (51)
_ 3 2_ .2
03=apdzayt 2a1@a3—a;—apd3—aidy,

then the solution of Eq44) is
1 Q'(r)
S3= r+ Z . (53)

_ 1 4 8 2
. A z,—,———|=
9(2,92,93) 24Q (r) 9 3k’ 27k6

1
3" cosecﬁ(kz)) . (60
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As (B,y) approaches the curv@2), this solution degen- the saddle point, giving rise to horseshoes and chaotic evo-
erates further, for in this limit the imaginary period of the lution. Otherwise, ifM(zp) is bounded away from zero, the
solution then tends to infinity as well; then thefunction  unstable and stable manifolds will not intersect at all. If the

reduces to just evolution equation is given in the form
9(z;0,0)=1/2%, (61) ds oH —
—_—= SX%'{‘ fg(S,Z), (64)
and the solution becomes a rational function. Here the quar- dz
tic now has a triple root, so the equation of motion is . ) L !
QS P g the Mel’nlkgv function for an orbit is definel?0] as a func-
ds;\® 1 tional of (z):
—=| == 7(S710%(Ssr), (62)
dz o © gH o
M(Zo)=J 55 (2 9(Sz+20)dz, (65)

with ry=cos@) andr,;=cos(3). The orbit is then

here it is evaluated on the homoclinic solutisi{(z). Thus

(63)  M(zo) can be thought of as a measure of the first-order
change in the HamiltoniaH along the orbit as a result of the
perturbatiorg. Using the equation of motion, and integrating

VI. SOME FINAL COMMENTS by parts, we reduce the integral to

lfo—r1
+ —
[1+16/(ry—r1)2)?]

S;=r,

The possible evolutions fof just described, and illus- w o o
trated in the figures, are unstable on long time scales. This is f BcodQ(z+ zo))S(zo)dz
because the perturbing territg , which are responsible for o
the change in polarization stafg also cause the soliton o o .
pulse to shed radiation as it propagates along the fiber. Put = —f sin(Q(z+ zo))Q(Sgo)—ro)dz
simply, if the perturbing termg<, are of ordere, then the *
energy of the radiation generated will be of or@ér The net _ (o _ _
effect of this process on the evolution &fthat we have =—sin(Q(zo))f cogQ(2))(SY)—r4)dz,
described is a slow drift to lower energy leveds This is o
essentially the origin of the fast mode instabilfty8]. This (66)
effect is only absent at stationary points of the polarization
dynamics, so stable equilibrium is only reached at thewherer, is the value ofS; at the saddle point, equal to 1 in
(unique minimum ofH, whendH/4S andS are antiparallel; this case. Since the integral in the last line does not vanish
this corresponds to the slow mode. More drastic effects occutientically, we see thaM(z,) has infinitely many simple
if nonautonomous perturbations are considered. It is oftereros, corresponding to infinitely many transversal intersec-
the case thaty varies randomly with distance down the tions between the stable and unstable manifolds, resulting in
fiber. Any such variation that makes a Hamiltonian systenchaotic dynamics. There is no threshold for the onset of this
nonautonomous can “break” a homoclinic orbit, leading to achaotic behavior; this is what we would expect in the ab-
chaotic evolution forS. We demonstrate this for the simpler sence of dissipation. This result extends immediately to the

case wherey is taken to bey(?) =€ cos@?), corresponding  €as€

to “rocking” of the birefringence axes of the fiber. Menyuk _ _

and Wai[19] discuss the field evolution of fibers with rocked y= o+ €c08Q2), (67)

birefringence axes. They point out that in the linear case, that _

sphere describing the polarization state of the optical field i4S @S0 possible in principle. _ _ _

quasiperiodic. The motion combines the frequencigs We have seen that a careful consideration of the Hamil-

+€202/(168) and Q. Almost always, the frequencies are tonia_n structure_ar]d symmetries .of I_E(q) leads o a S(_alf—

incommensurate and the trajectory will then fill some regionconsistent description of the polarization dynamics. This per-

of the Poincaresphere ergodically. If, however, they are Mits a complete description of the bifurcations of the reduced

commensurate, the trajectory executes a Lissajous figure ciyStem, and an exact calculation of its orbits, in particular the

the sphere. family of homoclinic orbits emanating from saddle points.
We can get an idea of the effect of small perturbations orl N€ €xtension to nonautonomous systems of the same type is

the homoclinic orbit. for instance in the ca@gio and also possible; here we expect perturbations in, for instance,

— — ’ . e ' the twist of the fiber, to lead to chaotic motion in the neigh-

y= € cos(1z), where O<e<1, by applying Mel'nikov analy-  porhood of the homoclinic orbit.

sis to the system. This requires calculation of the function

M (zp) defined below; it is known that iM(zo) has simple ACKNOWLEDGMENT

zeros, the effect of the perturbation is to break the ho-

moclinic connection, leading to infinitely many transversal One of the author$S.M.B.) is pleased to acknowledge
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